
A Hybrid Preference Learning and Context Refinement
Architecture

Korbinian Frank1,Patrick Robertson1, Sarah McBurney2, Nikos Kalatzis3,
Ioanna Roussaki3 and Marco Marengo4

Abstract. Pervasive computing envisions a world where people are
surrounded by numerous communication and computing intercon-
nected devices that are invisible and assist users in their everyday
tasks in a seamless unobtrusive manner. Most pervasive computing
research initiatives aim towards the realization of smart spaces, i.e.
fixed spaces that provide pervasive features in a static and geographi-
cally limited environment. To bridge these isolated pervasive spaces,
the EU project Persist has introduced the concept of self-improving
Personal Smart Spaces (PSSs) that follow their owners wherever they
go. This paper provides an overview of the context and preference
learning facilities that have been designed to support the realiza-
tion of PSSs and enhance their proactivity and self-improvement fea-
tures.

1 Introduction
Pervasive computing [22] [21] is a next generation system paradigm
that aims to assist users in their everyday tasks in a seamless un-
obtrusive manner. It assumes that users are surrounded by numerous
communication and computing devices of various features, which in-
teroperate and are capable of capturing and processing information
regarding users, their behaviour and their environments. This infor-
mation is used to establish context-awareness features [16] and to
enable the provision of personalized context-aware services [12]. In
this framework, there have been various research initiatives aiming
towards the design and realization of smart spaces [23] in homes,
offices, universities, schools, hospitals, hotels, museums, and other
private or public places, where various automation facilities support
the users. Nevertheless, these are fixed spaces that provide pervasive
features in a static and geographically limited environment. They are
alike independent ”islands” of pervasiveness in a sea of legacy ser-
vice provisioning systems. When the users exit these ”islands” no
pervasive computing features are offered. To bridge this gap, the no-
tion of self-improving Personal Smart Spaces has been introduced by
the Persist project.

Persist is a European research project (http://www.
ict-persist.eu/) funded under the Seventh Framework
programme that aims to couple the facilities offered by next gen-
eration mobile communications with the features provided by the
static smart spaces to support a more ubiquitous and personalised
smart space that is able to follow the user wherever he/she goes. A

1 German Aerospace Center (DLR), Germany, email: {korbinian.frank |
patrick.robertson}@dlr.de

2 Heriot-Watt University Edinburgh, UK, email: S.M.McBurney@hw.ac.uk
3 National Technical University of Athens, Greece, email: {nikosk | na-

nario}@telecom.ntua.gr
4 Telecom Italia s.p.a., Italy, email: marco.marengo@telecomitalia.it

Personal Smart Space (PSS) will provide to its owner multimodal
intelligent interfaces, via which he/she will be able to access and
configure the various services and resources that are available locally
and remotely, even when limited or even no network connectivity
is available. PSSs will be able to discover other PSSs and interact
with them in order to create a richer and more flexible environment
for their owners. Each PSS consists of multiple devices, both
mobile and fixed, owned by a single user. As the owner of the
PSS moves to different locations and places, his/her PSS interact
with other mobile or fixed PSSs located in the owner’s surrounding
environment, aiming for a unique support for pervasive service
provisioning. PSSs constantly monitor their owner’s behaviour &
environment and they exploit learning techniques to further optimise
the pervasive experience perceived by their owner’s. In a nutshell,
a Personal Smart Space can be defined as a set of services within
a dynamic space of connectable devices, where the set of services
are owned, controlled, or administered by a single user. It facilitates
interactions with other PSSs, it is self-improving and is capable of
pro-active behaviour. Thus, a PSS is user centric and controlled by
a single user, it is mobile (at least from user perspective), it allows
interactions with other PSSs and is capable of self-improvement and
proactivity.

In order to establish the proactivity and the self-improvement fea-
tures of PSSs, quite sophisticated learning facilities are required.
These facilities need to support both the learning of the user pref-
erences, in order to enable the provision of personalized services, as
well as the inference of future or currently unavailable context in-
formation. This paper elaborates on the mechanisms that have been
designed in order to support context and preference learning and au-
tomated extraction.

The rest of this paper is structured as follows. In Section 2, a
library-based hybrid architecture for preference learning and context
refinement is presented, which is designed so as to demonstrate prop-
erties such as: transparency, modularity and pluggability. Section 3
elaborates on the context refinement algorithms. In this respect, the
following are described: Bayesian Filters that refine the location ac-
curacy, a clustering technique used to discover recurring locations,
a history-based context prediction mechanism, Bayesian high-level
context inference and a proximity estimation method that is based on
a diffusion model. Subsequently, in Section 4, three different prefer-
ence learning algorithms are described: the if-then-else rule learning,
the online incremental preference learning and the Bayesian learning
of user behaviour. Finally, in Section 5 conclusions are drawn and
an overview of further research challenges regarding learning in per-
sonal smart spaces is provided.

http://www.ict-persist.eu/
http://www.ict-persist.eu/


Preference Learning
Subsystem

Context Refinement
Subsystem

Context Management System

Learning approach 1

Learning approach 2

Learning approach n

Context refinement 1

Context refinement 2

Context refinement n

Figure 1. Simplified Architecture model for Preference Learning and Context Refinement libraries

2 A Library based Architecture Model

This section will present our hybrid architecture for preference learn-
ing and context refinement. It is part of the software architecture of
the EU project Persist. It only sketches the relevant part of the overall
architecture that can be found in [6].

The architecture section presented in this paper is shown in Fig-
ure 1. It represents a crucial part for realising self-improvement in
this system. In particular it interacts with the Context Management
subsystem and the Preference Management system, the access points
to external usage. while itself is only called from within the Persist
architecture. It is designed by the following guidelines:

• Transparency: The system user does not have to have any knowl-
edge about the existence of this system and should not be aware
either when it runs in the background. Response times have to
be fast and computational extensive processes should run at times
with low processor occupancy. All queries have to be issued to a
single access point.

• Modularity: Deployment on mobile devices has to deal with lim-
ited resources. Therefore some processes will have to be per-
formed in the back end of the Persist system, while other modules
are deployed on all mobile devices. Therefore our architecture has
to allow for a splitting of functionality and has to be able to run
even when some parts are missing locally or are not reachable due
to a lack of network connectivity.

• Pluggability: There are many different approaches for machine
learning and refinement of context information. This architecture
shall not reduce the performance capabilities of the Persist system
by limiting to a certain number of algorithms for self improve-
ment. Even during runtime it has to be able to include new algo-

rithms that can immediately be used further on. This is allowed by
a common interface for all methods within one library.

As you can see in Figure 1, the presented part consists of two inter-
related library systems. On the left, the Preference Learning subsys-
tem is strongly related with the Preference Management system as
it learns and updates preference rules for this system. It is triggered
by the Persist Eventing system upon user actions that are stored in
the context database. These actions are retrieved by the Preference
Learning subsystem and passed on to the methods in the learning li-
brary which use it either directly or after a certain time or amount
of gathered actions. The resulting preference rules are stored again
in the context database, but may also serve as input to the context
refinement subsystem that are specialised on evaluating them.

Hence the right branch of the picture is dedicated to evaluation al-
gorithms. Context refinement can be any method that accesses avail-
able context information from the Context Management system and
refines/enriches it. Therefore a number of different algorithms are in-
side the context refinement library. These can work either on demand
or run continuously, subscribing themselves for changes of their in-
put context information. While on-demand algorithms are triggered
by the Context Management system, if requested information is not
available, continuous refinement can be caused either also by context
consumers that have to be notified upon any change or by the nature
of the approach.Continuous refinement would be in theory desirable
for any client, but practice shows that it is much more resource con-
suming and often needless. So a suitable trade off has to be found.



3 Context Refinement algorithms

Context information gathered by sensors is stored and managed in
the Context Database, as shown in the last section 2. In many cases
however this information is not easily processable for context con-
sumers, as it is too fine grained, not reliable enough, not meaningful
or also just not the information that is searched for. That is why a
context aware architecture must provide a number of approaches to
refine the raw context information and provide the consumers with
the right, reliable and precise information.

3.1 Bayesian Filters to refine Location Accuracy

Location estimation of a moving entity such as a person can be
viewed as a static or dynamic estimation process, depending on how
often a location estimate is needed, or can be efficiently generated.
It can be shown that the dynamic Bayesian estimator is the most ac-
curate form of estimation for this problem and very often algorithms
from the family of particle filters are applied, [9]. The reason for the
superiority of dynamic filtering over repeated one-shot estimation is
that the former makes use of the temporal correlations of the location
in the form of a process or ”motion” model. When location updates
are only needed rarely then the cost of continual estimation - both in
terms of battery power and any other resources such as communica-
tions bandwidth - must be weighed against the improved accuracy.
Also, dynamic estimation is far more suited to estimate the full pose
of a person, i.e. also the direction the person is facing.

In sequential Bayesian filtering, sensors provide some information
related to location or motion. Such sensors can encompass GPS re-
ceivers, RFID readers, WLAN sensors, UWB systems, barometric
altimeters, magnetometers, inertial sensors and many more. It is im-
portant to recognize that these sensors do not necessarily need to give
location information directly; a magnetic compass gives information
about the orientation of a person which still allows positioning itself
to be improved in a dynamic scenario [25]. Furthermore, map infor-
mation can be used to improve positioning, especially when using
inertial sensors. Hence ”refinement of location accuracy” is an infor-
mal but frequently used term for the process of combining any sensor
information with the goal of accurate location information.

Dynamic localisation is especially important in the indoor envi-
ronment since many sensors that are usually very accurate no longer
perform very well, such as GPS receivers or mobile radio position-
ing. dedicated infrastructure such as UWB systems may be available
but suffer from coverage problems. In these cases a motion model in
a dynamic estimator that takes maps into account can greatly improve
performance.

Finally, an important advantage of any Bayesian filter is that it
inherently provides uncertainty information about the location and
pose, which can be passed to other processing layers, such as proba-
bilistic context inference.

3.2 Clustering to discover recurring locations

Current terminal devices can readily access location related informa-
tion whereas other sources of contextual information are harder to
gather and process, and many techniques may be applied to enhance
the accuracy of such data. Nevertheless, coordinates identify a sin-
gle point in space, while people are most accustomed to reason in
terms of ”places”, regions of space. Location tagging is a method for
inferring ”places” from a set of positions. ”Places” are regions of
space that carry some meaning to the user and to which the user can

Figure 2. From positions to places: how a set of coordinates (left) is trans-
formed into places (right)

potentially attach some (meaningful) semantics. Examples of places
include home, work, pub and airport.

The location tagging component is part of the reasoning frame-
work and offers both places detection functionalities and a user inter-
face for managing the user location model. Once discovered, places
are defined by a region of space, characterized by a non null area,
a description and a place-type which is chosen from a simple place-
types taxonomy [10].

The learning process involves the following steps:

• clustering: user position history is partitioned in several clusters of
data, which represent the most recurring locations. Our implemen-
tation uses the Shared Nearest Neighbour (SNN) [15] algorithm to
discover clusters with different densities.

• place definition: once discovered, clusters are just sets of points,
making it difficult to store and to use them. A convex hull algo-
rithm [3] is therefore applied to each cluster in order to discover
the smallest polygon that includes all the cluster’s points. Only the
vertices of each cluster are stored.

• user validation: before being useful, places need to be validated
by the user. Users are able to manipulate their places and eventu-
ally add new ones or delete unwanted ones. Assigning place-types
(e.g. ”office”, ”restaurant”, . . . ) to a user’s places enables excit-
ing scenarios, as other reasoning components could make use of
such information to offer place-aware services or advertisements.

The clustering step is time-consuming and should therefore be
carefully scheduled. It is also recommended to follow an incremental
approach, in order to reduce the amount of processed data.

3.3 History based context prediction
The efficient collection, maintenance, and processing of History of
Context (HoC) [13] is critical for Personal Smart Spaces, as it allows
for inference of future context and current context information that
is no longer available. The HoC management framework in Persist,
also caters for elements of the user behaviour, thus providing input
to support the user preferences’ learning process, as well as the in-
ference of user intent regarding the usage of pervasive services. The
designed HoC management facilities are also able to support the ex-
traction of periodic patterns regarding context data combinations and
use these patterns in order to deliver successful context predictions.

The proposed approach regarding the HoC lifecycle consist of 4
generic phases which are schematically depicted in figure 3. Ini-
tially, context sources feed the measured context data in the main
context DB synchronously (Step 0) or asynchronously (Step 1). Sub-
sequently, this information is cached in the HoC DB maintained



Figure 3. History of Context lifecycle

by a resource-rich system (e.g. a user’s home PC) where it is pro-
cessed and scored(Step 2). Based on this input and enforcing time-
dependent attenuation to all past context values, context prediction
rules (called Basic Prediction Rules) are generated (Step 3) and dis-
seminated to PSS systems supporting HoC based context prediction
or estimation (Step 4).

In more details the PSS user or administrator may identify the
context data types that need to be monitored. The values of HoC
data recorded can be quantifiable, such as the GPS coordinates ex-
pressing location, or can be represented by abstract tags, as is the
case for activity (e.g. busy, free, sleeping), device used (PDA, lap-
top, desktop), semantic location (home, work, restaurant), etc. These
data along with the respective timestamps are initially cached at the
devices connected with the context sources and when possible for-
warded to a resource rich system that maintains the HoC database.
The database is structured in 48 half hour time frames. Context data
combinations are assigned to time frames depending on the start and
end time these were observed. Subsequently, the entries assigned to
each time frame are ”scored”. Thus, instead of maintaining all oc-
currences of each context data combination, as well as their start/end
time and date, each such combination is assigned to a single entry in
the corresponding time frame in the HoC database, along with a sin-
gle score that is decreased as time passes by and increased every time
the exact same context situation is observed.An example segment of
the main HoC DB table is presented in figure 4.

Figure 4. Example of part of the main table of the HoC database

This approach aims to reduce the storage resources required and
achieve significant context summarization. The score values are cal-
culated on a daily basis. Depending on the score values and the se-
lected rule generation model, context prediction rules are generated.
As the size of the prediction rules is minimal, it is possible to for-
ward them to all the remote devices enabled for context prediction or
inference, irrespective of the storage and processing resources they
have available.

3.4 Bayesian High-level Context Inference

The last sections 3.1 and 3.2 showed how to add meaning and pre-
cision to context information by refining sensor readings, respec-
tively deducing missing context information from past patterns in
section 3.3. For many applications however context information is
necessary that cannot come from sensors – as there is no appropriate
sensor: for so called high-level context information. Most prominent
among those are situation, activity, mood, manoeuvre, comfort, dan-
ger, stress and so on.

If an application or a preference depends on such high-
level information (“IF user is going home...” or “IF
user is not stressed...”) this information has to be inferred
from available context source information by appropriate rules.

A very promising approach for this inference is the use of
Bayesian Belief Networks (BN) as the rule representation. BNs con-
sist of random variables (represented as nodes) with defined states
which are interconnected by directed edges representing causal de-
pendencies and contain a conditional probability distribution (CPD)
[19, 11]. The random variables can represent context attributes, their
states model the possible values of the context attribute, as can be
seen in Figure 5. If sensor readings are available, the respective at-

Suggested
Action

Rail Transport 
Delays

Road
Traffic Status

Current Time
Maps

Flight
Schedule

Time of Arrival
at Airport

- Proceed
- Hurry
- Book next flight

- 10 min. early start
- On time
-10 min. delay
-20 min. delay
-…

- 8:47

- No delays
-10 min. delay
-20 min. delay
-30 min. delay
-…

- No delays
-10 min. delay
-20 min. delay
-30 min. delay
-…

- 9:15
- 9:25
- 9:35
- 9:45
- 9:55
-…

User
Location

User
Mode of Travel

- Still at home
- In car
- On Train

Figure 5. An example Bayesian Network

tributes are assigned evidence, which influences the probabilities of
related attributes – calculating the most probable state of a target
context attribute given all available evidence can be used as context
inference. This approach combines several advantages [2]:

• A Bayesian network readily handles situations where some data
entries are missing or uncertain.

• As it has both a causal and probabilistic semantic, it is an ideal
representation for combining prior knowledge and data.

• Bayesian statistical methods in conjunction with Bayesian net-
works avoid the overfitting of data and do not need to separate
data into training and testing sets. They are also able to incorpo-
rate smoothly the addition of new data as it becomes available.

One drawback of this kind of inference is its time complexity.
Cooper [4] identified the problem as NP hard in the number of ran-
dom variables, which holds even for singly connected BNs (see [26]).
With a large number of interrelated context attributes, context infer-
ence could therefore become unfeasible in practice on mobile, re-
source limited devices. To overcome or reduce this problem, either
the number of nodes or the number of states per node or the number



of edges have to be limited. Our approach [7] is using Bayeslets to
reduce computation time by reducing all three parameters.

Furthermore it offers us the chance to personalise inference rules,
which is of particular importance for high-level context, as it depends
very much on the user’s individual perception. Inference rules based
on Bayeslets can even adapt during run-time to changed behaviour
of its owner. If the Context Management System triggers inference
on a particular context attribute, it chooses the Bayeslet of the target
user that has the desired context attribute as output node, connects it
to the related Bayeslets to build a complete, relevant inference rule,
evaluates it and returns the inferred state of the requested context
attribute.

3.5 Proximity Estimation with a Diffusion Model
Consider the following short use-case: A person is visiting a com-
pany for a meeting and would like to print a document. She is not
very familiar with the layout of the premises and there are certain
restrictions as to which printers are allowed to accept and process re-
quests from visitors. Assuming that the visitor is associated with the
local network of the premises a context dependent search for suitable
printer services can take place. This search can encompass not only
administrative constraints, and those based on the service usage (e.g.
for a colour printer), but also on location and proximity metrics. In
particular, our visitor should usually be guided to the nearest suitable
printer, where nearest refers to reachability in pedestrian terms.

Simply applying a straightforward Euclidean metric in 3D space
will usually fail, since non-linearities, such as walls, in the true prac-
tical proximity are not considered. A true proximity metric should be
proportional to something like the time taken to reach the destination
or the distance travelled.

In [1] a mobility model pedestrians was introduced that applies a
gas diffusion algorithm to estimate a path between two points in a
given floor plan layout. The algorithm works by emitting a virtual
”gas” source from the destination that propagates through the open
portions of a building layout and becomes absorbed by walls. Any
point in the building experiences a certain concentration of the ”gas”
that is proportional to the distance to the emitter (destination, e.g.
a particular printer). So, physical facilities like printers can be eas-
ily rated by their diffusion matrix by comparing their relative ”gas”
densities at the starting point (e.g. where the user is located). Compu-
tation of the gas source is straightforward ([14]) and the results may
be cached in a database.

Once a user has selected a suitable destination, using the diffusion
model and other criteria such as suitability, the model can also be
used in a very simple way to generate routing information to guide
the user to the destination. All that needs to be done is to follow the
steepest gradient of ”gas” concentration to the destination.

In order to impose restrictions in motion for certain people (e.g.
visitors may not be allowed access to certain areas) then these restric-
tions can be represented in their own layout. People with disabilities
may also impose restrictions on certain features of a building, such
as stairs.

4 Preference learning algorithms
Creating and maintaining a set of user preferences is a continuous
and important task as the quality of the personalization provided de-
pends on the quality and completeness of the user’s preference set.
When a new user enters a pervasive environment or an existing user
starts to use a new service, network or device existing preferences

may need to be refined or new preferences added. Performing this
task in an entirely manual fashion is undesirable for two reasons.
Firstly, the possible number of personalizable attributes (e.g. service
customization parameters, service selection criteria, etc.) is poten-
tially very large with each possibly requiring a preference. Manually
creating and maintaining such a large set requires time and effort, de-
tracting from the benefits that personalization aims to provide. Sec-
ondly, some user behaviours may be so implicit that users may not
identify them as explicit preferences. For example, a user may not
be aware that he/she always selects a service within a certain price
range at a certain time of day. Even if the user was aware of such a be-
haviour it may be difficult for them to represent it in the appropriate
format. Therefore it is essential that mechanisms, such as monitor-
ing and learning are in place to aid the user with preference creation
and maintenance, providing them with a more accurate and complete
preference set and hence better overall personalization.

4.1 IF-THEN-ELSE Rule Learning

User preferences can be represented in many ways however, it is ben-
eficial to provide a human-understandable format to allow the user
some control over their preference set and hence personalisation. One
adopted approach is to express user preferences as IF-THEN-ELSE
rules to allow for human-readability. One way to achieve this is to
first learn a decision tree, then translate the tree into an equivalent
set of rules. The IF-THEN-ELSE rule learning algorithm [17] im-
plements this strategy. It is an adaptation of Quinlan’s C4.5 batch
learning algorithm [20] which aims to split outputs into distinctive
groups using a minimal number of attributes from the input dataset.
As with C4.5 Gain Ratio is used to combat problems arising from
attributes with multiple values.

Input to the algorithm is a list of userAction ob-
jects each containing some action the user has performed
(e.g. video = paused) and a context snapshot of the
user’s context situation when they performed the action (e.g.
location = home, call = incoming). Each userAction
also contains further meta-data such as the service type and service
instance from which the action originated. The list of userActions
is stored in the Context Management System in the User History
Database. Learned output is a set of decision trees (one for each
learned preference) with context attributes as condition nodes and
actions as leaf nodes. Each tree is then mapped to IF-THEN-ELSE
rules for human-readability.

The dynamic nature of pervasive environments often challenges
the batch approach to preference learning. For example, if the user
changes his behaviour this cannot be captured until the next batch
learning process. Even then, new behaviour may be over-written by
more established (but perhaps distant) behaviours. Several projects
[24] implement ’quick response’ mechanisms that immediately ac-
commodate new behaviours into the user’s preference set however
this approach can suffer from catastrophic forgetting which is unde-
sirable if the behaviour change was only temporary.

To overcome these challenges a novel dual store approach is
adopted for the User History Database. This acts as a short-term store
(STS) and long-term store (LTS). Figure 6 below illustrates the con-
tent of each partition.

The STS only holds userActions which have happened since the
most recent batch learning process at time ti (i.e. this is where new
userActions are initially stored). The data held in the STS is the input
to each batch learning process. After the next batch learning process
occurs at time tj the STS will be retrieved, learned upon, copied



Figure 6. Dual User History

to the LTS and cleared. The LTS stores all user actions which have
happened since the user started to ever use the system at time t0
until the most recent batch learning process at time ti. It acts as a
backup containing the entire back catalogue of userActions. The
LTS is used to resolve any conflicts that may arise when merging
new learned information with existing preferences. The dual store
approach allows recent changes in user behaviour to be identified
quickly while also providing support where behaviour changes are
temporary or where conflicts occur between new learned information
and existing preferences.

4.2 Online, Incremental Preference Learning

As a compliment to the batch IF-THEN-ELSE learning algorithm,
Persist will also employ on-line, incremental preference learning.
This will be implemented as a hetero-associative neural network that
will associate current context to user actions. The topology of the
neural network allows for internal network knowledge to be trans-
lated into IF-THEN-ELSE rules for user understanding. This ap-
proach will be described in detail in a forth-coming paper.

4.3 Bayesian Learning of Behaviour and Inference
Rules

As described in section 3.4 Bayesian Networks (BN) can be used
to represent the probabilistic relationships between random variables
that represent various aspects of context information and user ac-
tions, from sensor readings to the high-level context attributes such
as a person’s current activity. Such a network structure is defined
completely by the set of random variables (nodes) and directed arcs
between random variables that can often be interpreted as causality
(in the direction of the arc) [19]. The conditional probability distri-
butions of each node - conditioned on each possible instantiation of
all the parent nodes - defines the network quantitatively (parameters
of the network). As described earlier, given the network structure and
parameters inference is the process of computing the probability of
a set of hidden random variables given observations of other random
variables. This section will briefly address the approaches used to
obtain both network structure and parameters using a combination of

expert knowledge and previous observations of the random variables
by learning.

Applied to learning of behaviour rules, some RVs (preference out-
come nodes) can either be interpreted as active behavioural choices
by the user, or the BN can be extended to a utility network with de-
cision and utility nodes, where the decision nodes are the outcomes.
Applying such learnt rules during the use of the system is thus the
process of evaluating known context information to infer the user’s
most probable choices or actions based on learning the BN (which
itself can be interpreted as a probabilistic behavioural rule).

4.3.1 Determination of the scope of the network

Context information pertaining to a user of Smart Electronic Spaces
may in general encompass a very large range of human activities,
sensor readings, information such as calendars, as well as such data
relating to other people; all represented as random variables (RVs)
in a very large BN. Obviously it is impossible to include all sets of
such RVs in a representation used in inference, as the resulting BN
would be too large. Take, for instance, the case where we are attempt-
ing to infer the current activity of a person in an office environment.
Her activity will be part of a BN that includes not just her location
and pose but also information such as the devices she is using, her
calendar schedule, her heart rate and other bio-sensor readings, her
past activity, the time of day, proximity to other people, the status of
projects she is working on, as well as much more; additionally, such
a BN will encompass similar aspects of other people’s context, such
as that of her colleagues. For practical relevance it will be necessary
to impose boundaries on which RVs will be used to represent the in-
formation ”around” her activity. For this purpose we have previously
introduced the concept of ”Bayeslets” that are small BNs that may be
linked to form larger BNs [7]. It is fair to assume that human expert
knowledge will be used to determine the RVs that make up such a
Bayeslet, and which smaller Bayeslets can be assembled to represent
a problem domain such as activity.

4.3.2 Learning static BNs

We have thus far restricted our approach to encompass only static
BNs, rather than dynamic BNs [18], and to RVs with discrete vari-
ables. To incorporate at least some temporal aspects, we do allow
RVs that encode previous outcomes of RVs, such as a user’s activity
or location a certain time ago or in the future. Assuming that a human
expert has determined the scope of RVs in a learning process we can
resort to established BN learning techniques for:

1. Learning with complete data.
2. Learning with missing data.
3. Learning with missing data and also hidden variables.

Learning with complete data sets of all involved RVs is easiest
and follows the approach described in [5]. Usually some form of
greedy hill climbing is used to rate candidate networks and we take
the best scoring NW ignoring network structure priors. Naturally, we
will impose knowledge of:

• Causality between RVs (such as sensors readings being caused by
a physical process); i.e. the presence and direction of arcs.

• Arcs that we know or assume are missing between RVs, thus im-
posing more independence.

• Complete sub-units of the network that are assumed to be known.

For missing data we will employ algorithms from the class of
(structural) expectation maximization (EM) introduced in [8].



5 Conclusion and Outlook
This paper reflects the work being undertaken in task 4.4 of the EU
project Persist that is investigating learning and reasoning algorithms
for personal, self-improving smart spaces. Learning preferences and
reasoning rules is a core part for the self-improvement targeted in
Persist, inference and in general all context refinement procedures
are the methods necessary to give expressivity to preferences and to
evaluate them.

We decided to adopt a library based approach with a single access
point and common interchange formats, that gives access to a collec-
tion of different algorithms for learning and context refinement. This
library is not limited however to the presented methods, but open and
extendible to new approaches allowing for the same interface.

This paper presents a number of context refinement approaches
that apply on different levels. Fusing raw sensor data for more pre-
cise information in section 3.1, then the enrichment of this precise
absolute location with semantics like in section 3.2. Such meaning-
ful information is basis for the approaches for context prediction in
section 3.3 and high-level context inference in section 3.4. A partic-
ular high-level context information, proximity, can be evaluated with
the approach shown in section 3.5.

We have presented in this work furthermore three different algo-
rithms for learning, each offering some variants. Differences between
them are the execution procedure (batch vs. incremental learning),
weighting of long past and recent input information and also the
purpose. The approaches in sections 4.1 and 4.2 are identifying be-
havioural patterns for preferences whose conditions are permanently
monitored further on, while the probabilistic approach in section 4.3
can provide Bayesian context inference rules (suitable for the ap-
proach in section 3.4) as well. These approaches are implemented in
the project Persist that will publish its source code at an Open Source
portal as a basis and guideline for fellow researchers. Still there are
a number of questions to be answered.

• A particular challenging one will be the orchestration of these ap-
proaches. A component that delegates learning or context refine-
ment tasks to the most appropriate approaches is not considered
so far.

• Neither has there been undertaken detailed work about conflict
resolution mechanisms yet. In case of contradicting results from
different methods this will be necessary. This functionality could
be based on confidence of the methods’ outcomes that is evaluated
by a probabilistic component, e.g. in a static BN.

• Resource and computation time issues of the overall system have
not been dealt with so far.

• Privacy issues are not treated in this paper, but are part of the Per-
sist architecture. The outcomes of this research is published in a
separate paper.

ACKNOWLEDGEMENTS
The research leading to these results has received funding from the
European Community’s Seventh Framework Programme [FP7/2007-
2013] under grant agreement no. 215098 of the Persist (PERsonal
Self-Improving SmarT spaces) Collaborative Project

REFERENCES
[1] M. Angermann, J. Kammann, and B. Lami, ‘A new mobilty model

based on maps’, in The 58th IEEE Semiannual Vehicular Technology
Conference (VTC Fall 2003), (2003). Date=2003-10-06 - 2003-10-09;.

[2] M. Angermann, P. Robertson, and T. Strang, ‘Issues and requirements
for bayesian approaches in context aware systems’, in LoCA 2005, ed.,
C. Strang, T.; Linnhoff-Popien, (05 2005). event dates=2005-05-12;.

[3] H. Huhdanpaa C. Barber, D. Dobkin, ‘The quickhull algorithm for con-
vex hulls’, ACM Transaction on Mathematical Software, 22(4), 469–
483, (1996).

[4] G. F. Cooper, ‘Probabilistic inference using belief networks is NP-
hard’, Technical Report KSL-87-27, Medical Computer Science Group,
Knowledge Systems Laboratory, Stanford University, Stanford, CA,
(May 1990).

[5] G. F. Cooper and E. Herskovits, ‘A bayesian method for the induction of
probabilistic networks from data’, Machine Learning, 09(4), 309–347,
(October 1992).

[6] I. Roussaki et al., ‘Initial architecture design’, Technical report, PER-
SIST, FP7-ICT-2007-1, (November 2008).

[7] K. Frank, M. Röckl, and P. Robertson, ‘The bayeslet concept for modu-
lar context inference’, in The Second International Conference on Mo-
bile Ubiquitous Computing, Systems, Services and Technologies (UBI-
COMM08), eds., J.L. Mauri, N. Cardona, K. Chen, M. Popescu, and
A. Doci, pp. 96 – 101. IEEE Computer Society Conference Publishing
Services (CPS), (05 2008). event dates=[2008-09-29 - 2008-10-04];.

[8] Nir Friedman, ‘The bayesian structural em algorithm’, in In UAI, pp.
129–138. Morgan Kaufmann, (1998).

[9] F. Gustafsson, F. Gunnarsson, N. Bergman, and Forssell U. et al., ‘Parti-
cle filters for positioning, navigation and tracking’, IEEE Transactions
on Signal Processing, (2002). vol. 50, No. 2, 2002.

[10] H. Tschofenig H. Schulzrinne. Rfc 4589: Location types registry. IETF.
[11] D. Heckerman, ‘A tutorial on learning with bayesian networks’, Tech-

nical report, Learning in Graphical Models, (1995).
[12] K. Henricksen and J. Indulska. Personalising contextaware appli-

cations, 2005. K. Henricksen and J. Indulska, Personalising Con-
textAware Applications, in OTM Workshop on ContextAware Mobile
Systems, vol. 3762, Lecture Notes in Computer Science: Springer-
Verlag, 2005, pp. 122-131.

[13] Nikos Kalatzis, Ioanna Roussaki, Nicolas Liampotis, Maria Strim-
pakou, and Carsten Pils, ‘User-centric inference based on history of
context data in pervasive environments’, in SIPE ’08: Proceedings of
the 3rd international workshop on Services integration in pervasive en-
vironments, pp. 25–30, New York, NY, USA, (2008). ACM.

[14] Mohammed Khider, Susanna Kaiser, Patrick Robertson, and Michael
Angermann, ‘A novel movement model for pedestrians suitable for per-
sonal navigation’, in ION NTM 2008, pp. 819 – 827. The Institute of
Navigation, (01 2008). Date=2008-01-28 - 2008-01-30;.

[15] V. Kumar L. Ertöz, M. Steinbach, ‘Finding clusters of different sizes,
shapes, and densities in noisy, high dimensional data’, SIAM Interna-
tional Conference on Data Mining (SDM ’03), (2003).

[16] Seng Loke, Context-Aware Pervasive Systems: Architectures for a New
Breed of Applications, Auerbach Publications, 2006.

[17] S. McBurney, E. Papadopoulou, N. Taylor, and H. Williams, ‘Adapt-
ing pervasive environments through machine learning and dynamic per-
sonalization’, in Proc. of the 2008 Conference on Intelligent Pervasive
Computing, pp. 395–402, (2008).

[18] Kevin P. Murphy, Dynamic bayesian networks : representation, infer-
ence and learning, Ph.D. dissertation, 2002.

[19] Judea Pearl, Causality: Models, Reasoning, and Inference, Cambridge
University Press, 2000.

[20] John Ross Quinlan, C4.5: Programs for Machine Learning, Morgan
Kauffman, 1993.

[21] D. Saha and A. Mukherjee, ‘Pervasive computing: a paradigm for the
21st century’, Computer, 36(3), 25–31, (2003).

[22] M. Satyanarayanan, ‘Pervasive computing: Vision and challenges’,
IEEE Personal Communications, 8, 10–17, (2001).

[23] Ramesh Singh, Preeti Bhargava, and Samta Kain, ‘State of the art
smart spaces: application models and software infrastructure’, Ubiq-
uity, 7(37), 2–9, (2006).

[24] SPICE. Service platform for innovative communication environment.
http://www.ist-spice.org/, 2008.

[25] K. Wendlandt, M. Khider, M. Angermann, and P. Robertson, ‘Con-
tinuous location and direction estimation with multiple sensors using
particle filtering’, in MFI 2006, ed., IEEE. IEEE Verlag, (09 2006).
Date=2006-09-04 - 2006-09-06;.

[26] D. Wu and C. Butz, ‘On the complexity of probabilistic inference in
singly connected bayesian networks’, in RSFDGrC(1), pp. 581–590,
(2005).


	Introduction
	A Library based Architecture Model
	Context Refinement algorithms
	Bayesian Filters to refine Location Accuracy
	Clustering to discover recurring locations
	History based context prediction
	Bayesian High-level Context Inference
	Proximity Estimation with a Diffusion Model

	Preference learning algorithms
	IF-THEN-ELSE Rule Learning
	Online, Incremental Preference Learning
	Bayesian Learning of Behaviour and Inference Rules
	Determination of the scope of the network
	Learning static BNs


	Conclusion and Outlook

